# Petri nets in industrial informatics



#### Gašper Mušič

University of Ljubljana Faculty of Electrical Engineering





Laboratory of Modelling, Simulation and Control

Laboratory of Autonomous Mobile Systems



#### Contents

- History of Petri nets
- What are Petri nets?
- Petri net theory
- Link to industrial informatics
  - control logic design
  - operations scheduling
- Conclusions

#### **History of Petri nets**

- Carl Adam Petri (1926–2010)
  - mathematician and computer scientist
  - born in Leipzig
  - invented the initial form of nets at the age of 13
    - for the purpose of describing chemical processes



 as a teenager acquainted with the works of Einstein, Heisenberg, and German computing pioneer Konrad Zuse





#### **History of Petri nets**



- end of 50s work in Hannover and Bonn
  - work on theoretical framework for basic computing problems
    - Turing's model of infinite tape is physically infeasible
    - need for distribution of states and locality of interactions
- 1962 dissertation Kommunikation mit Automaten at the Technical University Darmstadt
  - algebraic aspects of discrete concurrent (distributed) systems
  - sketch of a general net theory, proposal of distributed systems theory that complies to basic laws of physics
- 1968-91 leader of information systems research institute within GMD (Gesellschaft f
  ür Mathematik und Datenverarbeitung)
  - development of Petri nets theory

#### **History of Petri nets**



• Petri's model of expandable stack



modularity, expandability, asynchronity, locality of interactions

#### What are Petri nets?



- Model of activities and activity triggering conditions
- Example: vending machine



#### **Place transition nets**



- Petri's original nets
  - only transitions, conditions, and arcs
- Place/Transition Petri nets
  - additionally: unified (black) tokens and constant weights
  - clear mathematical description, possible analysis of properties



#### **Mathematical description**

- Place/Transition Petri nets
  - net structure (places, transitions, arcs, weights) N = (P, T, A, W)
    - $P = \{p1, p2, \dots, p_k\}, k > 0$
    - $T = \{t1, t2, ..., t_l\}, l > 0$  $(P \cup T = \emptyset \text{ in } P \cap T = \emptyset)$
    - $A \subseteq (P \times T) \cup (T \times P)$
    - $W: (P \times T) \cup (T \times P) \to \mathbb{N}$
  - Petri net system  $S = (N, m_0)$ 
    - $m: P \rightarrow IN$  marking (tokens in  $p \in P$ ) m can be represented by an integer vector m $m_0$  is initial marking







#### **Matrix description**



- Transition input matrix *Pre* 
  - element in *i*-th row and *j*-th column describes the arc

from 
$$p_i$$
 to  $t_j$ :  
$$a_{ij}^{Pre} = \begin{cases} W(p_i, t_j), & (p_i, t_j) \in A \\ 0, & (p_i, t_j) \notin A \end{cases}$$

- Transition output matrix **Post** 
  - element in *i*-th row and *j*-th column describes the arc

from 
$$t_j$$
 to  $p_i$ :  
$$a_{ij}^{Post} = \begin{cases} W(t_j, p_i), & (t_j, p_i) \in A \\ 0, & (t_j, p_i) \notin A \end{cases}$$

Incidence matrix: C = Post - Pre

$$(p_i, t_j) \in A \land (t_j, p_i) \in A \Rightarrow c_{ij} = W(t_j, p_i) - W(p_i, t_j)$$

#### **Algebraic analysis**



- Firing vector  $\boldsymbol{u} = [0, ..., 0, 1, 0, ..., 0]^T$ 
  - 1 at the *j*-th component represents firing of transition  $t_j$
- Transition  $t_i$  is enabled if  $m \ge Pre \cdot u$
- State equation

$$m' = m + C \cdot u$$

- A necessary condition for reachability of a marking
  - a marking  $\boldsymbol{m}$  is only reachable from  $\boldsymbol{m}_0$  if

$$\boldsymbol{m}_0 + \boldsymbol{C} \cdot \boldsymbol{x} = \boldsymbol{m}$$

has an integer solution x

### **Applicability in industrial informatics?**



T



### LMSC LAMS

#### **Application domains**

- analysis of manufacturing procedures and processes
- structural optimization of production lines
- specification of recipes in batch systems
- control logic design
  - human-machine interface design
  - resource allocation
- operations scheduling
  - modelling of decision rules ...





#### **Control logic design**



#### Verification

Reachable markings analysis:



#### **Control logic design**



- Combined synthesis verification approach
  - safety measures (interlocks)
    - supervisory control synthesis
  - operational procedures
    - overall system model is built
    - verification



 this way control system properties can be analysed, which cannot be addressed by analysis of the process model or control logic model alone

G. Mušič, D. Matko. An admissible-behaviour-based analysis of the deadlock in Petri-net controllers. Simulation modelling practice and theory, 16 (8): 1077-1090, 2008.



# Example – part of production Ine Supervisor synthesis

 $L = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0]$ b = 1 $C_c = -LC$  $= [-1 \ 1 \ 0 \ 0 \ 0 \ 0 \ -1 \ 1]$  $m_{c0} = b - Lm_0 = 1$ 

 With additional constraints, additional supervisory places are calculated



#### **Operations scheduling**

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

source: KBA Group Newsletter

Petri nets and operations scheduling – modelling

 Development of model-building algorithms for scheduling problems

![](_page_18_Figure_2.jpeg)

G. Mušič, T. Löscher, D. Gradišar. An open Petri net modelling and analysis environment in Matlab. International Mediterranean Modelling Multiconference 2006, Barcelona, Spain.

D. Gradišar, G. Mušič. Production-process modelling based on production-management data: a Petri-net approach. International Journal of Computer Integrated Manufacturing, 20 (8): 794-810, 2007.

D. Gradišar, G. Mušič. Petri-net modelling for batch production. IFAC Conference on Manufacturing Modelling, Management and Control, 2013, Saint Petersburg, Russia.

## Petri nets and operations scheduling – optimization

![](_page_19_Picture_1.jpeg)

- Based on the net simulation
  - operations durations must be considered timed simulation
  - on the fly conflict resolution design of a schedule

![](_page_19_Figure_5.jpeg)

## Petri nets and operations scheduling – optimization

![](_page_20_Picture_1.jpeg)

- Based on the net simulation
  - operations durations must be considered timed simulation
  - on the fly conflict resolution design of a schedule

![](_page_20_Figure_5.jpeg)

![](_page_21_Picture_0.jpeg)

#### Scheduling example

![](_page_21_Figure_2.jpeg)

Importance of a proper net state space exploration

 consideration of possibility that an enabled transition is not immediately triggered

M. A. Piera, G. Mušič. Coloured Petri net scheduling models : timed state space exploration shortages. Transactions of IMACS, Mathematics and computers in simulation, 82 (3): 428-441, 2011.

### More complex scheduling problems

![](_page_22_Picture_1.jpeg)

- Problems with sequence dependent setup times
- Local search algorithms
  - solution space *S*; search in a »neighbourhood « *N* of a given solution  $s \in S, N : S \rightarrow 2^S$ 
    - simulated annealing (SA),
       threshold accepting (TA), tabu search (TS), genetic algorithms (GA)
  - determination of solution quality PN simulation
- Simulation-based scheduling approach

G. Mušič. Simulation-optimization of schedules with sequence dependent setup times based on Petri net models. The 28th European Modeling & Simulation Symposium, September 26 - 28 2016, Cyprus.

![](_page_22_Figure_9.jpeg)

### Usefulness of Petri nets in operations scheduling

![](_page_23_Picture_1.jpeg)

- Larger generalization capability in comparison to other formalisms
  - many real scheduling problems can be modelled in the same way as standard problems
  - unified treatment of typical situations in automated production:
    - tasks synchronization, shared resources, material flow joining and splitting, maintenance of process operation and deadlock avoidance ...
- The same model can be used to
  - analyse system properties
  - simulate operation scenarios
  - use various schedule optimization methods

### Wider importance of Petri nets

![](_page_24_Picture_1.jpeg)

- Nets as a universal model
  - revival of the »space computer« idea
    - initially K. Zuse, Rechnender Raum, 1969
  - C. A. Petri, Das Universum als großes Netz, Ist das Universum ein Computer?, Spektrum der Wissenschaft, Spezial, 3/2007
    - at the Planck length quantum computing can be described by digital systems using combinatorial models
    - the universe can be studied using discrete nets
    - discrete systems would suffice to explain even quantum and relativistic phenomena